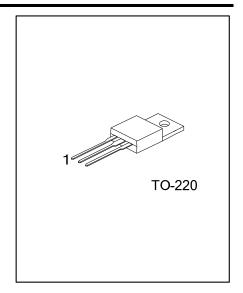

UTC UNISONIC TECHNOLOGIES CO., LTD


US104S/N

SCRS

DESCRIPTION

Thanks to highly sensitive triggering levels, the UTC US104S is suitable for all applications where the available gate current is limited, such as motor control for hand tools, kitchen aids, overvoltage crowbar protection for low power supplies, ... Available in through-hole or surface-mount packages, they provide an optimized performance in a limited space area.

ORDERING INFORMATION

Order Number		Deelvere	Pin Assignment			Dealises		
Lead Free	Halogen Free	Package	1	2	3	Packing		
US104SL-4-TA3-T	US104SG-4-TA3-T	TO-220	К	А	G	Tube		
US104SL-6-TA3-T	US104SG-6-TA3-T	TO-220	К	А	G	Tube		
US104SL-8-TA3-T	US104SG-8-TA3-T	TO-220	К	А	G	Tube		
US104NL-4-TA3-T	US104NG-4-TA3-T	TO-220	К	А	G	Tube		
US104NL-6-TA3-T	US104NG-6-TA3-T	TO-220	К	А	G	Tube		
US104NL-8-TA3-T	US104NG-8-TA3-T	TO-220	К	А	G	Tube		
Note: Pin Assignment: K: Cathode G: Gate A: Anode								

US104SL-4-TA3-T	(1) T: Tube
(2)Package Type	(2) TA3: TO-220
(3)Lead Free	(3) G: Halogen Free, L: Lead Free

ABSOLUTE MAXIMUM RATING

PARAMETER			RATINGS	UNIT
Depetitive Deek Off State Maltaree And	US104S/N-4	V _{DRM} , V _{RRM}	400	
Repetitive Peak Off-State Voltages And	US104S/N-6		600	V
Repetitive Peak Reverse Voltage	US104S/N-8		800	
RMS On-State Current (180° Conduction Angle) ($T_c = 115^{\circ}C$)			4	Α
Average On-State Current (180° Conduction Angl	e) (T _C = 115℃)	I _{T(AV)}	2.5	Α
Non Repetitive Surge Peak On-State Current t _P =8.3ms		I _{TSM}	33	А
(T」= 25℃)	t _P =10ms		30	A
I ² t Value For Fusing ($t_P = 10 \text{ ms}, T_J = 25^{\circ}C$)			4.5	A²S
Critical Rate Of Rise Of On-State Current		dl/dt	50	A/ue
(I _G = 2 x I _{GT} , tr ≤ 100 n s, F= 60 Hz ,T _J = 125℃)				A/µs
Peak Gate Current (t_P =20µs, T _J = 125°C)			1.2	Α
Average Gate Power Dissipation $(T_J = 125^{\circ}C)$			0.2	W
Storage Temperature			-40 ~ +150	°C
Junction Temperature			-40 ~ +125	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. The device is guaranteed to meet performance specification within 0°C ~70°C operating temperature range and assured by design from -20° C $\sim 85^{\circ}$ C.

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	θ _{JA}	60	K/W
Junction to Ambient	θ _{JC}	3.0	K/W

UTC US104S(SENSITIVE) ELECTRICAL CHARACTERISTICS

(1j=25°C, unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Gate Trigger Current	I _{GT}	$V_{\rm D}$ = 12 V, R _L =33 Ω			200	mA
Gate Trigger Voltage	V _{GT}	$V_{\rm D}$ = 12 V, R _L =33 Ω			0.8	V
Gate Non-Trigger Voltage	V_{GD}	V _D = V _{DRM} , R _L = 3.3kΩ R _{GK} = 220 T _J = 125℃	0.1			V
Reverse Gate Voltage	V _{RG}	I _{RG} = 10 μA	8			V
Holding Current	Ι _Η	$I_T = 50 \text{mA}, R_{GK} = 1 \text{k}\Omega$			5	mA
Latching Current	IL	$I_G = 1 \text{mA}$, $R_{GK} = 1 \text{k}\Omega$			6	mA
Circuit Rate Of Change Of off-State Voltage	dV/dt	V _D =67% V _{DRM} ,R _{GK} = 220Ω, T _J = 125°C	5			V/µs
On-State Voltage	V _{TM}	I_{TM} = 8 A, t_P = 380 µs, T_J = 25 $^{\circ}$ C			1.6	V
Threshold Voltage	V _{t0}	T _J = 125℃			0.85	V
Dynamic Resistance	R _d	T _J = 125℃			90	mΩ
Off-State Leakage Current	I _{DRM}	V_{DRM} = V_{RRM} , R_{GK} = 220 Ω , T_{J} = 25 $^{\circ}$ C			5	μA
	I _{RRM}	V_{DRM} = V_{RRM} , R_{GK} = 220 Ω , T_J = 125 $^{\circ}$ C			1	mA

 $(T = 25^{\circ})$ unless otherwise specified)

■ UTC US104N(SENSITIVE) ELECTRICAL CHARACTERISTICS

(T_J=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Gate Trigger Current	I _{GT}	V _D = 12 V, R _L =33Ω	2		15	μA
Gate Trigger Voltage	V _{GT}	$V_{\rm D}$ = 12 V, R _L =33 Ω			1.3	V
Gate Non-Trigger Voltage	V_{GD}	$V_{\rm D}$ = $V_{\rm DRM}$, $R_{\rm L}$ = 3.3 k Ω , $T_{\rm J}$ = 125 $^{\circ}$ C	0.2			V
Holding Current	Iн	I _T = 100 mA Gate open			30	mA
Latching Current	١L	$I_{\rm G} = 1.2 I_{\rm GT}$			60	mA
Circuit Rate Of Change Of off-State Voltage	dV/dt	V_D = 67 % V_{DRM} Gate open, T_J = 125°C	100			V/µs
On-State Voltage	V _{TM}	I_{TM} = 8A, t_P = 380 µs, T_J = 25°C			1.6	V
Threshold Voltage	V _{t0}	T」= 125℃			0.85	V
Dynamic Resistance	Rd	T」= 125℃			62	mΩ
Off-State Leakage Current	I _{DRM}	V _{DRM} = V _{RRM} , T _J = 25°C			5	μA
	I _{RRM}	V _{DRM} = V _{RRM} , T _J = 125°C			2	mA

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

